An adaptive Euler-Maruyama scheme for SDEs: convergence and stability

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Euler-maruyama Scheme for Sdes: Convergence and Stability

Abstract. The understanding of adaptive algorithms for SDEs is an open area where many issues related to both convergence and stability (long time behaviour) of algorithms are unresolved. This paper considers a very simple adaptive algorithm, based on controlling only the drift component of a time-step. Both convergence and stability are studied. The primary issue in the convergence analysis is...

متن کامل

Convergence of the Euler–Maruyama method for multidimensional SDEs with discontinuous drift and degenerate diffusion coefficient

We prove strong convergence of order [Formula: see text] for arbitrarily small [Formula: see text] of the Euler-Maruyama method for multidimensional stochastic differential equations (SDEs) with discontinuous drift and degenerate diffusion coefficient. The proof is based on estimating the difference between the Euler-Maruyama scheme and another numerical method, which is constructed by applying...

متن کامل

An Explicit Euler Scheme with Strong Rate of Convergence for Financial SDEs with Non-Lipschitz Coefficients

We consider the approximation of stochastic differential equations (SDEs) with non-Lipschitz drift or diffusion coefficients. We present a modified explicit EulerMaruyama discretisation scheme that allows us to prove strong convergence, with a rate. Under some regularity and integrability conditions, we obtain the optimal strong error rate. We apply this scheme to SDEs widely used in the mathem...

متن کامل

An explicit Euler scheme with strong rate of convergence for non-Lipschitz SDEs

We consider the approximation of stochastic differential equations (SDEs) with non-Lipschitz drift or diffusion coefficients. We present a modified explicit EulerMaruyama discretisation scheme that allows us to prove strong convergence, with a rate. Under some regularity conditions, we obtain the optimal strong error rate. We consider SDEs popular in the mathematical finance literature, includi...

متن کامل

Convergence rate and stability of the truncated Euler-Maruyama method for stochastic differential equations

Influenced by Higham, Mao and Stuart [10], several numerical methods have been developed to study the strong convergence of the numerical solutions to stochastic differential equations (SDEs) under the local Lipschitz condition. These numerical methods include the tamed Euler–Maruyama (EM) method, the tamed Milstein method, the stopped EM, the backward EM, the backward forward EM, etc. In this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IMA Journal of Numerical Analysis

سال: 2006

ISSN: 0272-4979,1464-3642

DOI: 10.1093/imanum/drl032